A Hölder-type Inequality for Positive Functionals on Φ-algebras

نویسندگان

  • KARIM BOULABIAR
  • Karim Boulabiar
چکیده

The main purpose of this paper is to establish with a constructive proof the following Hölder-type inequality: let A be a uniformly complete Φ-algebra, T be a positive linear functional, and p, q be rational numbers such that p−1 + q−1 = 1. Then the inequality T (|fg|) ≤ (T (|f |)) (T (|g|)) holds for all f, g ∈ A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On φ-Connes amenability of dual Banach algebras

Let φ be a w-continuous homomorphism from a dual Banach algebra to C. The notion of φ-Connes amenability is studied and some characterizations is given. A type of diagonal for dual Banach algebras is dened. It is proved that the existence of such a diagonal is equivalent to φ-Connes amenability. It is also shown that φ-Connes amenability is equivalent to so-called φ-splitting of a certain short...

متن کامل

Similarity and Ergodic Theory of Positive Linear Maps

In this paper we study the operator inequality φ(X) ≤ X and the operator equation φ(X) = X, where φ is a w∗-continuous positive (resp. completely positive) linear map on B(H). We show that their solutions are in one-to-one correspondence with a class of Poisson transforms on Cuntz-Toeplitz C∗-algebras, if φ is completely positive. Canonical decompositions, ergodic type theorems, and lifting the...

متن کامل

A Variational Expression for the Relative Entropy

We prove that for the relative entropy of faithful normal states φ and ω on the von Neumann algebra M the formula S(φ,ω) = sup{ω(Λ)-logφ(/): h = h*eM] holds. In general von Neumann algebras the relative entropy was defined and investigated by Araki [1, 3]. After Lieb had proved the joint convexity of the relative entropy in the type / case [10] several proofs appeared in the literature and they...

متن کامل

An Operator Extension of Bohr’s Inequality

T φ(At)dμ(t) for every linear functional φ in the norm dual A of A; cf. [3, Section 4.1]. Further, a field (φt)t∈T of positive linear mappings φ : A → B between C -algebras of operators is called continuous if the function t 7→ φt(A) is continuous for every A ∈ A. If the C-algebras include the identity operators, denoted by the same I, and the field t 7→ φt(I) is integrable with integral I, we ...

متن کامل

Harnack inequality and Hölder regularity estimates for a Lévy process with small jumps of high intensity

We consider a Lévy process in Rd (d ≥ 3) with the characteristic exponent Φ(ξ) = |ξ|2 ln(1 + |ξ|2) − 1. The scale invariant Harnack inequality and apriori estimates of harmonic functions in Hölder spaces are proved. AMS Subject Classification: Primary 60J45, Secondary 60G50, 60G51, 60J25, 60J27

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002